66 research outputs found

    Degraded Broadcast Channel with Side Information, Confidential Messages and Noiseless Feedback

    Full text link
    In this paper, first, we investigate the model of degraded broadcast channel with side information and confidential messages. This work is from Steinberg's work on the degraded broadcast channel with causal and noncausal side information, and Csiszaˊ\acute{a}r-K\"{o}rner's work on broadcast channel with confidential messages. Inner and outer bounds on the capacity-equivocation regions are provided for the noncausal and causal cases. Superposition coding and double-binning technique are used in the corresponding achievability proofs. Then, we investigate the degraded broadcast channel with side information, confidential messages and noiseless feedback. The noiseless feedback is from the non-degraded receiver to the channel encoder. Inner and outer bounds on the capacity-equivocation region are provided for the noncausal case, and the capacity-equivocation region is determined for the causal case. Compared with the model without feedback, we find that the noiseless feedback helps to enlarge the inner bounds for both causal and noncausal cases. In the achievability proof of the feedback model, the noiseless feedback is used as a secret key shared by the non-degraded receiver and the transmitter, and therefore, the code construction for the feedback model is a combination of superposition coding, Gel'fand-Pinsker's binning, block Markov coding and Ahlswede-Cai's secret key on the feedback system.Comment: Part of this paper has been accepted by ISIT2012, and this paper is submitted to IEEE Transactions on Information Theor

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Capacity Region of a New Bus Communication Model

    No full text
    In this paper, we study a new bus communication model, where two transmitters wish to send their corresponding private messages and a common message to a destination, while they also wish to send the common message to another receiver connected to the same wire. From an information-theoretical point of view, we first study a general case of this new model (with discrete memoryless channels). The capacity region composed of all achievable (R0,R1,R2) triples is determined for this general model, where R1 and R2 are the transmission rates of the private messages and R0 is the transmission rate of the common message. Then, the result is further explained via the Gaussian example. Finally, we give the capacity region for the new bus communication model with additive Gaussian noises and attenuation factors. This new bus communication model captures various communication scenarios, such as the bus systems in vehicles, and the bus type of communication channel in power line communication (PLC) networks

    Secure error‐correcting network codes with side information leakage

    No full text

    Brca1 Is Upregulated by 5-Aza-CdR and Promotes DNA Repair and Cell Survival, and Inhibits Neurite Outgrowth in Rat Retinal Neurons

    No full text
    Previous studies have reported that Brca1 acts as a “hinge” in the development of the central nervous system (CNS). However, the precise role of Brca1 in rat retinal neurons remains unclear. Here, we found that Brca1 is developmentally downregulated and silenced in adult retina. Brca1 was upregulated in rat primary retinal neurons by 5-Aza-2′-deoxycytidine (5-Aza-CdR) treatment. Moreover, the upregulation of Brca1 by both 5-Aza-CdR and transgenic Brca1 promoted genomic stability and improved cell viability following exposure to ionizing radiation (IR). Furthermore, transgenic Brca1 significantly inhibited neurite outgrowth of retinal neurons, which implicates that Brca1 silencing promotes cell differentiation and determines neuronal morphology. Taken together, our results reveal a biological function of Brca1 in retinal development

    Measuring low energy atmospheric neutrino spectra with the JUNO detector

    No full text
    Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about Cosmic Rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric νe\nu_e and νμ\nu_\mu fluxes is presented in this paper. In this study, a sample of atmospheric neutrinos Monte Carlo events has been generated, starting from theoretical models, and then processed by the detector simulation. The excellent timing resolution of the 3" PMT light detection system of JUNO detector and the much higher light yield for scintillation over Cherenkov allow to measure the time structure of the scintillation light with very high precision. Since νe\nu_e and νμ\nu_\mu interactions produce a slightly different light pattern, the different time evolution of light allows to discriminate the flavor of primary neutrinos. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum from the detector experimental observables. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region
    corecore